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Abstract

Developing robust speech emotion recognition (SER) systems
is challenging due to small-scale of existing emotional speech
datasets. However, previous works have mostly relied on hand-
crafted acoustic features to build SER models that are difficult
to handle a wide range of acoustic variations. One way to alle-
viate this problem is by using speech representations learned
from deep end-to-end models trained on large-scale speech
database. Specifically, in this paper, we leverage an end-to-end
ASR to extract ASR-based representations for speech emotion
recognition. We further devise a factorized domain adaptation
approach on the pre-trained ASR model to improve both the
speech recognition rate and the emotion recognition accuracy
on the target emotion corpus, and we also provide an analysis
in the effectiveness of representations extracted from different
ASR layers. Our experiments demonstrate the importance of
ASR adaptation and layer depth for emotion recognition.
Index Terms: speech emotion recognition, end-to-end ASR,
acoustic representation, domain adaptation

1. Introduction
Speech emotion recognition (SER) is an important module in
human-centered applications such as the development of per-
sonalized agents [1] and mental health assessment [2]. Rec-
ognizing emotion via speech signals involves developing algo-
rithms that could mathematically characterize affective acous-
tic properties that vary with speakers, e.g., change in pitch or
loudness in conversations. A majority of SER models rely on
training recognition models using low-level handcrafted acous-
tic features such as a combination of pitch, shimmer, loudness,
and MFCCs as inputs. These acoustic features are shown re-
peatedly to carry substantial emotional cues [3, 4, 5, 6, 7]. How-
ever, models trained on these low-level features are often diffi-
cult to generalize well to a variety of domains due to the small
amount of available emotional speech data; in addition, these
features are not accessible and relevant to most other down-
stream tasks within a given technological solution.

Recently, researchers have started to develop representa-
tion learning approaches for SER under transfer learning set-
ting. [8, 9] use unsupervised representation learning to extract
robust speaker-invariant features. Ghosh et al. [10] utilize rep-
resentations transferred from valence and activation regression
task to 4-class emotion recognition. Another recent promising
representation learning approach for SER task is through the use
of automatic speech recognition (ASR) systems. Speech repre-
sentations derived from ASR have been shown to preserve rich
information that can be used in many other speech-based recog-
nition tasks [11]. In comparison to the size of available data in
SER domain, data in ASR domain is much larger in scale. This

means that the speech representations learned from ASR mod-
els could be more robust to different variations and at the same
time encode rich content, such as semantic, phonemic informa-
tion, and also emotional expressions in speech. In this work,
we also adopt ASR-derived speech representations for emotion
classification.

Previous works often use ASR-derived speech represen-
tations to address the issue of small-scale emotional speech
database [12, 13, 14]. Some notable works include: Tits et
al. [13] propose a Wavenet-like ASR [15] and pre-train it with
VCTK dataset [16]. The representations extracted from dif-
ferent stages of Wavenet are applied to estimate valence and
arousal. Lakomkin et al. [12] use DeepSpeech-like model [17]
and pre-train on three datasets, LibriSpeech, TED-LIUM v2,
and VoxForge [18, 19]. During SER training, a concatenated
vector of ASR and SER representations is fed into a softmax
layer in a progressive network for SER. Lu et al. [14] use
RNN-T model pre-trained on 125,000 hours Youtube videos
[20] to extract ASR features for a sentimental decoder. While
these works have demonstrated the usefulness of intermediated
features of ASR models for emotion recognition by first pre-
training them from high-resource ASR databases, these ASR
models are used purely as a front-end extractor as its network
layers are not adapted to the target emotion database at all. It is
well-known that ASR systems are sensitive to the domain mis-
match problem, the effect of mismatch may degrade the quality
of speech representations used in these SER tasks. However,
adaptation approach from ASR datasets to SER domain is not
investigated in these works.

In this paper, we explore the strategy of using end-to-end
(E2E) ASR system as representation extractor for SER appli-
cations. We first pre-train an attention-based Listen, Attend
and Spell (LAS) ASR [21] on LibriSpeech subset (360 hours)
[18] to extract frame-wise acoustic features. In order to ob-
tain target emotion domain’s speech representations, we per-
form a three-stage fine-tuning pipeline to adapt this pre-trained
ASR to an emotional speech dataset, the IEMOCAP (12 hours)
[22]. Additionally, we devise an adaptive model compression
approach based on singular value decomposition (SVD). SVD-
based model adaptation, i.e., a low-rank model adaptation ap-
proach, has been widely used to address conditions of acoustic
mismatch [23, 24, 25]. In this work, we factorize a weight ma-
trix into two sub-matrices using SVD in every fully-connected
(FC) layer of Listener; this approach reduces the parameter size
to learn a compact ASR model for a smaller target emotion cor-
pus. Furthermore, in this work, we provide one of the first in-
vestigations in understanding the relation between ASR perfor-
mances and SER accuracy when using ASR as a speech repre-
sentation extractor.

We evaluate the performance of pre-trained and fine-tuned
models on the IEMOCAP. Our results show that SER accuracy
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Figure 1: The proposed framework. We adopt SVD-based model
adaptation to FC layers in the encoder of LAS.

is correlated with ASR performance on the target emotional cor-
pus, i.e., the quality of ASR representations is critical. The
fine-tuned LAS outperforms pre-trained LAS by 24.0% in word
error rate (WER), 2.1% for emotion recognition accuracy. Fi-
nally, our experiments also show that ASR representations from
a lower layer of Listener are more suitable for the speech emo-
tion recognition task [11], i.e., achieving the best 66.0% emo-
tion recognition rate.

2. Methodology
Figure 1 shows the proposed procedure for E2E ASR represen-
tation learning and emotion recognition task. First, we train
a LAS model on LibriSpeech subset. Then, we perform do-
main adaptation approaches include full model fine-tuning and
SVD-based model adaptation. Finally, we freeze the parame-
ters of Listener in order to use it to extract frame-wise hidden
representations as input to train the emotion recognition net-
work. We also extract features from the first pBLSTM layer
(pBLSTM+FC Layer) to see if representations from a lower
layer are more informative. We analyze the emotion recog-
nition performance using different ASR encoders: pre-trained
LAS, fine-tuned LAS and structured LAS.

2.1. Datasets

LibriSpeech is a benchmark speech recognition dataset of
read English speech publicly available for download [18]. We
pre-train LAS model on the LibriSpeech train-clean-360 subset
that contains 360 hours of audio samples with 921 speakers and
evaluate our models with pre-defined validation and test sets.

IEMOCAP is a well-known conversational SER dataset that
consists of five sessions, each session consists of different con-
versational scenarios between two speakers [22]. In total, the
IEMOCAP contains 10 speakers and 12 hours of audio record-
ings. In this paper, we conduct four emotion classes classifi-
cation: {anger, happiness+excitement, neutral, sadness}, where
happiness and excitement are combined as happiness. The dis-
tributions of total 5531 utterances are: {19.9%, 29.5%, 30.8%,
19.5%}.

2.2. LAS Model

The LAS model [21] is a sequence-to-sequence network that
consists of an encoder (i.e. acoustic model), a decoder
(i.e. language model) with an attention layer between them
that learns to align input acoustic signals to output charac-
ter sequences. Given an input sequence of acoustic feature

X = {x1, ..., xT } with T timesteps, LAS outputs p(Y |X) =
p(y1|X), ..., p(yL|X), a sequence of posterior probability vec-
tors of output characters, where L is the length of the output
sequence, L ≤ T . The encoder is a stack of two pyrami-
dal BLSTM (pBLSTM) layers on top of a BLSTM layer, each
pBLSTM layer is a combination of a FC layer after a pBLSTM
shown in Figure 1. The encoder encodes input sequence X into
high-level features h = {h1, ..., hU} with U ≤ T . The de-
coder consists of two LSTM layers and an attention layer [21]
that maps h to character sequences Y 1. In this work, we take
the encoder to extract ASR representations h for SER training.

We pre-train LAS on LibriSpeech train-clean-360 subset
[18], a relatively small amount of source data compared with
dataset used in [12, 14], with MFCCs 39 (13+delta+accelerate)
features. Moreover, we improve LAS by applying label smooth-
ing and speed perturbation [27, 28]. For speed perturbation, we
augment a speech signal by re-sampling it at speed factors 0.9
and 1.1. These techniques improve the generalization of LAS.

2.3. ASR Fine-tuning

Although several generalization techniques have been applied
to prevent ASR models from over-fitting to source training data,
ASR models remain sensitive to domain mismatch problems.
Pre-trained ASR models often fail to consider idiosyncratic
characteristics of speech samples from other domains, such as
environmental noise, speaking speed and tone. Moreover, train-
ing customized ASR systems in SER domain is impractical due
to the small scale of emotional speech datasets. We hypothe-
size that building a domain-adapted ASR can benefit the perfor-
mance of the downstream task, i.e. speech emotion recognition.
To adapt ASR models trained on an audio read dataset (Lib-
riSpeech) to a conversational dataset that contains emotional
expressions in speech signals (IEMOCAP), we fine-tune pre-
trained ASR on the IEMOCAP with a three-stage fine-tuning
pipeline as Figure 2 shows.

Initially, we fine-tune the encoder (acoustic model) and
freeze the weights in the decoder. This stage aims at allevi-
ating the acoustic mismatch between the LibriSpeech and the
IEMCOAP. Also, stage-1 has the most effect on the IEMOCAP
ASR performance. In the second stage, we freeze the fine-tuned
encoder, and update the weights of the decoder to fit the lexi-
cal characteristics of the IEMOCAP. Finally, we fine-tune the
full model weights. Compared with pre-training process, we
fine-tune ASR models with a smaller learning rate and a lower
probability of teacher forcing. During fine-tuning, speed pertur-
bation and label smoothing are also applied. We use fine-tuned
LAS to extract domain-aware speech representations for emo-
tion recognition.

2.4. SVD-based Model Adaptation

SVD-based domain adaptation is a model adaptation technique
that removes redundant parameters of a pre-trained model, it
provides compact representations when we adapt pre-trained
models to a smaller target domain [24, 23, 29]. We conduct
low-rank matrix decomposition to FC layers in the encoder to
reduce the number of adapted parameters and obtain domain-
specific acoustic model. For an m × n weight matrix W in
a FC layer, we approximate it with two low-rank matrices as
shown in the right side of Figure 1. The factorized FC layer

1Our E2E ASR implementation in tensorflow: https://github.com/
30stomercury/Automatic-Speech-Recognition.
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Figure 2: The proposed three-stage fine-tuning, we fine-tune
LAS trained on LibriSpeech with the IEMOCAP. Different parts
of LAS are frozen in different stages.

becomes:

FC(x) = tanh(xW + b)

≈ tanh(xU (d)V (d)ᵀ + b)
(1)

where U (d) is a matrix of size m× r, V (d)ᵀ is a matrix of size
r × n. Moreover, we conduct SVD approximation of W to ini-
tialize factorized weights. With the help of SVD initialization,
adaptation of the encoder (i.e., acoustic model) achieves faster
convergence [30, 24].

Wn×m = Um×nΣn×nV
ᵀ
n×n

≈ Um×rΣr×rV
ᵀ
r×n

≈ Um×rNr×n

(2)

where Σn×n is a diagonal matrix with singular values of W in
descending order, r ≤ n. We then keep first r singular values
of W and assign values of low-rank matrices Um×r to U (d),
Nr×n to V (d). The number of parameters are reduced from
mn to r(m + n). After decomposition, we apply the above
three-stage fine-tuning to the structured LAS as well.

2.5. SER Model

Speech emotion recognition in the IEMOCAP is our target
recognition task. The goal of SER model is to predict the 4-
class emotion. In this paper, we employ IAAN2 as our emo-
tion classifier [31] that predicts emotion by leveraging contex-
tual information from the current speaker and his/her interlocu-
tor. IAAN includes two GRUs to model contextual information.
An interaction-aware attention network is utilized to incorporate
contextual information into the target utterance emotion model-
ing. To lower the computational cost, we use a unidirectional
GRU in this work instead of a bidirectional GRU used in [31].

As Figure 1 shown, we use encoder from pre-trained or
fine-tuned LAS to extract ASR representations of the target ut-
terance, the previous utterance of the current speaker and the
previous utterance of the interlocutor. The details of the IAAN
model architecture can be found in [31]. Note that the parame-
ters of the encoder are frozen during the training stage of emo-
tion classification.

2Our SER implementation in tensorflow: https://github.com/
30stomercury/Interaction-aware-Attention-Network.

3. Experimental Setup and Results

3.1. Experimental Setup

3.1.1. Model and Training Details

ASR pre-training is conducted on LibriSpeech train-clean-360
subset. After pre-training, we fine-tune LAS on the IEMOCAP.
Special tokens in the IEMOCAP transcriptions like [LAUGH-
TER], [BREATHING] and [GARBAGE] are removed since
LibriSpeech have no such annotations. We compute 39 dimen-
sional MFCC features (13-dimensional Mel-frequency cepstral
coefficients with ∆ and ∆∆) every 10 ms. We use MFCC-
39 with per-utterance CMVN as ASR input. We employ a
BLSTM and two pBLSTMs with cell units 256 for each di-
rection in Listener. For the Speller, we use two LSTMs with
512 cell units. The size of weights in Listener, i.e. m × n, is
1024×512. During pre-training, the learning rate is set as 1e-4
and a mini-batch size is set as 32. While fine-tuning, we use a
smaller learning rate 1e-5 and 10% dropout rate. Also, we ap-
ply teacher forcing with probability 1 in the first two fine-tuning
stages, 0.8 of teacher forcing probability in the final stage of
fine-tuning. While performing SVD-based domain adaptation,
we pick r = 256. In total, we compressed 10% of the origi-
nal parameters. For the emotion classification network, we use
three GRUs with 1024 cell units. We use the learning rate 1e-
4 and a mini-batch size 64. All IAAN models are trained on
representations extracted from the ASR encoder.

3.1.2. Baselines

We report word error rate (WER) of LAS on both datasets. For
emotion recognition, we present unweighted accuracy (UA) and
weighted accuracy (WA), UA is the average of accuracies of
each category, WA is the percentage samples correctly classi-
fied. We compare different model baselines to examine the ef-
fectiveness of domain adaptation on both tasks. In all of our
experiments, we use a leave-one-session-out cross validation in-
stead of leave-one-speaker-out cross-validation used in related
work [13, 14]. Leave-one-speaker-out cross-validation tends to
give a higher performance due to the natural interlocutor depen-
dency. This assures our evaluation is truly speaker-independent
and resembles real-world scenarios.

Table 1 presents our experiments of transfer learning and
model adaptation baselines.

Pre-trained LAS: The baseline LAS [21] pre-trained on Lib-
riSpeech train-clean-360.
Baseline LAS: The LAS model directly trained on the IEMO-
CAP without pre-training.
Fine-tuned LAS: The LAS model fine-tuned on the IEMO-
CAP. We perform three-stage fine-tuning pipeline and fine-tune
full model.
Structured LAS: The structured LAS fine-tuned on the IEMO-
CAP. The weights of FC layers in Listener network is approxi-
mated by low-rank matrices with SVD-based initialization.

Table 2 summarizes the results of emotion recognition
with representations extracted from different layer depths. A
pBLSTM Layer is a stack of a pBLSTM and a FC layer
in Figure 1. We experiment using representations derived
from the first and the second pBLSTM layer. We denote
pBLSTM-Layeri as the ith pBLSTM layer.
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Dataset Model WER WA UA

LibriSpeech Pre-trained LAS 26.2 - -

IEMOCAP

Baseline LAS 97.7 27.9 28.1
Pre-trained LAS 80.4 61.3 62.3
Fine-tuned LAS 58.2 62.5 64.4
Structured LAS 56.4 63.1 64.4

Table 1: The performance of ASR and SER tasks on both
datasets.

3.2. Results and Analysis

3.2.1. ASR Performance

The ASR performance of different baselines are shown in Ta-
ble 1. Pre-trained LAS obtains 24.9% and 26.2% in WER on
LibriSpeech dev and test sets respectively, we only present the
result on test set. Pre-trained LAS obtains 80.4% WER on the
IEMOCAP, 17.3% relative improvement over Baseline LAS.
With three-stage fine-tuning pipeline, Fine-tuned LAS reaches
58.2% with relative 22.2% improvement over Pre-trained LAS.
Furthermore, by applying SVD-based adaptation on the en-
coder, Structured LAS achieves 1.8% relative improvement in
WER over Fine-tuned LAS.

3.2.2. SER Performance

Regarding the performance using ASR representations on the 4-
class emotion classification task, we compared representations
from different LAS models. We find that the performance of
ASR models are correlated to emotion recognition accuracy.
From Table 1, Baseline LAS only obtains 28.1% in UA. With
the help of transfer learning, Pre-trained LAS obtains 62.3%
in UA with a relative 34.2% improvement over Baseline LAS.
After fine-tuning, Fine-tuned LAS obtains 64.6% in UA, out-
performing Pre-trained LAS 2.3% relative. While Structured
LAS obtains improvement over Fine-tuned LAS in ASR per-
formance, its performance on SER task, 64.6%, 63.1% in UA
and WA, shows only little improvement over Fine-tuned LAS.
Finally, from Table 2, representations extracted from the lower
layer of Fine-tuned LAS achieves the best 64.7% WA, from the
lower of layer Structured LAS achieves the best 66.0% in UA.

3.2.3. Effect of Adaptation

In this section, we analyze the effect on the quality of different
adapted ASR representations for SER. Observed from Table 1,
Baseline LAS shows poor performance in both tasks, showing
the challenge of training a target-only E2E ASR on a small-
scale dataset. On the other hand, Pre-trained LAS outperforms
Baseline LAS due to its better characterization of speech signals
obtained from a larger scale ASR database (Pre-trained LAS
obtains 26.2% WER in LibriSpeech while WER of Pre-trained
LAS on the IEMOCAP is still high). This indicates that ASR
model pre-trained on a relatively sufficient amount of source
speech data (360 hours) is capable of capturing rich emotional
cues that can be used as input for emotion recognition.

However, the problem of acoustic mismatch still remains.
From Table 1, with the help of three-stage fine-tuning, the ASR
performance of Fine-tuned LAS on the IEMOCAP is signifi-
cantly improved. The fine-tuning pipeline enables both acous-
tic model and language model to better adapt to the IEMOCAP.
Consequently, Fine-tuned LAS can extract domain-specific in-
formation based on the pre-trained LAS, achieving 64.4% UA
in the downstream emotion recognition task along with a rel-

Model Layers WA UA

Fine-tuned LAS pBLSTM-Layer1 64.7 65.8
pBLSTM-Layer2 62.5 64.4

Structured LAS pBLSTM-Layer1 64.0 66.0
pBLSTM-Layer2 63.1 64.4

Table 2: Comparisons of representations from different depths
of ASR models.

ative improvement of 22.2% in WER. Moreover, a compact
model adaptation technique, SVD-based model adaptation, is
experimented to investigate its contribution to ASR representa-
tion. Despite the better performance of Structured LAS in ASR
task, i.e., 1.8% improvement over Fine-tuned LAS, Structured
LAS shows no improvement in SER task. We hypothesize that
the reason is the choice of rank parameter used in our low-rank
approximation. In this work, we set the rank r = 256 for ma-
trix decomposition. However, pruning too many singular val-
ues may lose useful information that benefits downstream tasks
such as SER. While Structured LAS exhibits no improvement in
SER task, it achieves higher ASR and similar SER performance
with much fewer parameters compared with LAS fine-tuned on
full model.

3.2.4. Effect of Lower-Layer Representations

Instead of using the ASR representations after the two pBLSTM
layers, we investigate representations extracted from a lower
layer of LAS, i.e., the first pBLSTM layer. From Table 1,
pBLSTM-Layer1 outperforms pBLSTM-Layer2 in Fine-tuned
LAS and Structured LAS. Representations from a deeper layer
degrade the emotion recognition accuracy, which suggests that
deeper layers of ASR may contain less emotional information.
This result may be attributed to the mismatch between the tran-
script of LibriSpeech and the IEMOCAP. For example, annota-
tions in the IEMOCAP such as [LAUGHTER] and [BREATH]
are not labeled in LibriSpeech. The conversational language
is naturally different from the read speech collected in Lib-
riSpeech, which makes the layers adjacent to the decoder carry
less emotional content. Lower layers, however, offer better rep-
resentations for emotion recognition potentially as they target
less on directly mapping to character sequences, i.e., the acous-
tic properties such as emotion characteristics are preserved.

4. Conclusions

In this paper, we present an ASR-based representation that can
be used for speech emotion recognition. We improve the pre-
trained ASR encoder and show the contribution of domain adap-
tation approaches to both ASR and SER performance in the
IEMOCAP. LAS with three-stage fine-tuning and SVD-based
adaptation present a significant improvement over pre-trained
model in both tasks. Besides, we demonstrate that pre-trained
ASR can achieve comparable performance on SER task with-
out the need to train on thousands of hours of ASR data. In the
future, we would like to investigate the influence of decomposi-
tion rank on both ASR and SER tasks. Also, we are interested
in devising other adaptation approaches to better improve the
ASR and SER performance. Another immediate step is to in-
vestigate the effect that the quantity and the type of ASR data
could have on SER tasks.
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